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Abstract

The electroelastic analysis of a piezoelectric strip with an anti-plane shear crack whose surfaces are parallel to the

strip boundaries is made. Four cases of combined electromechanical loadings applied at the strip boundaries are

considered. For the case of a crack lying at the center of a strip, the electroelastic field, field intensity factors, and energy

release rate can be determined in explicit form via solving a resulting singular integral equation. For other cases, they

can be given in terms of an auxiliary function, which is obtained as a power series of d via solving a resulting Fredholm

integral equation using the iterative method, 2d being the ratio of the crack length over the strip width. Some numerical

results are presented graphically to show the influence of crack length and crack position on the normalized energy

release rate. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to the intrinsic coupling characteristics between electric and elastic behaviors, piezoelectric materials
have been used widely in technology such as transducers, actuators, sensors, etc. Great progress on the
study of electroelastic field disturbed by cracks in a piezoelectric material has been made in recent years.
Considerable researches in this area are mainly focused on determining the electroelastic field under various
different boundary conditions within the framework of the theory of reigning linear piezoelectricity. Many
theoretical solutions of crack problems have been derived under the assumption of several different electric
boundary conditions at the crack surfaces (see, for example, Pak, 1990, 1992; Sosa, 1991, 1992; Suo et al.,
1992; Wang, 1992; Dunn, 1994; Park and Sun, 1995a; Dascalu and Maugin, 1995; Sosa and Khutoryansky,
1996; Zhang and Tong, 1996; Zhang et al., 1998; Zhong and Meguid, 1997; Wang and Han, 1999; Chen and
Shioya, 1999; Yang, 2001).

The above-mentioned solutions are mainly related to internal cracks embedded in a piezoelectric ma-
terial. In general, in engineering applications the structure of piezoelectric devices is frequently met as a
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layered medium. Therefore, to secure the structural integrity of these piezoelectric devices, the problem
posed with a layered piezoelectric medium containing cracks is of much interest. As a result, determining
the electric and elastic behaviors disturbed by a crack in a layered piezoelectric material, in particular in the
close vicinity of the through crack tip, is prerequisite. For a piezoelectric layer or strip with a crack, Shindo
and coworkers made systematic investigation on the electroelastic analysis. The problems involving a
central permeable crack parallel to and perpendicular to the strip boundaries have been studied by Shindo
et al. (1990, 2000), respectively. Furthermore, they also investigated the corresponding electroelastic
problems for a central anti-plane shear crack (Shindo et al., 1996, 1997). More recently, the electroelastic
analysis of a rectangular sheet containing a central permeable crack subjected to anti-plane electrome-
chanical loadings has been made by Kwon and Lee (2000), and the problem of a piezoelectric strip with a
crack under in-plane electromechanical loadings has been analyzed by Wang et al. (2000), who compared
the results based on the permeability assumption with those based on the impermeability assumption. The
interface crack problem of a layered bimaterial composed of a piezoelectric material and a purely elastic
orthotropic medium has been considered by Narita and Shindo (1999).

This paper is concerned with the problem of an internal anti-plane shear crack embedded a piezoelectric
strip subjected to four cases of combined electromechanical loadings. The crack surfaces are assumed to be
parallel to the boundary surfaces of the strip and the crack is not necessarily located at the center of a strip.
Using the integral transform technique, the associated mixed boundary value problem is reduced to dual
integral equations, which are further transformed into a Fredholm integral equation by introducing an
auxiliary function. The iterative method for seeking an approximate solution is employed to solve the
resulting Fredholm integral equation in this paper, which is in contrast to those adopted by Shindo et al.
(1990, 1997), Shin et al. (2000) and Wang et al. (2000), who determined numerically the electroelastic field
via solving numerically a Fredholm integral equation. Then electroelastic field, field intensity factors and
energy release rate as well, are given explicitly in terms of the auxiliary function. In particular, for a special
case of a crack lying at the center of a strip, a closed-form solution is obtained via solving analytically a
singular integral equation. Finally, some numerical results are presented graphically to show the effects of
the crack position and the crack length on the normalized energy release rate.

2. Statement of the problem and basic theory

Consider a piezoelectric layer which has infinite extent in the xz-plane and finite size of thickness 2h
(2h ¼ h1 þ h2) along the y-axis direction. A through crack of length 2a is located at the plane y ¼ 0, and the
crack boundaries are parallel to the z-axis, as shown in Fig. 1. Here Cartesian coordinates x, y, z are the
principal axes of the material symmetry while the z-axis is oriented in the poling direction of the piezo-
electric strip. Four possible cases of combined electromechanical loadings will be considered. They are

Case 1: uniform longitudinal shear stresses and constant electric displacements at the top and bottom
surfaces of the layer, i.e.

szyðx; h1Þ ¼ szyðx;�h2Þ ¼ s0; Dyðx; h1Þ ¼ Dyðx;�h2Þ ¼ D0; �1 < x < 1; ð1Þ
Case 2: uniform longitudinal shear stresses at the top and bottom boundaries and constant voltage (or

electric potential difference) between the top and the bottom surface of the layer, i.e.

szyðx; h1Þ ¼ szyðx;�h2Þ ¼ s0; /ðx; h1Þ � /ðx;�h2Þ ¼ �2V0; �1 < x < 1; ð2Þ
Case 3: constant relative sliding displacement along the z-axis between the top and the bottom surface

and constant electric displacements at the top and bottom surfaces of the layer, i.e.

wðx; h1Þ � wðx;�h2Þ ¼ 2w0; Dyðx; h1Þ ¼ Dyðx;�h2Þ ¼ D0; �1 < x < 1; ð3Þ
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Case 4: constant relative sliding displacement along the z-axis and the voltage (or electric potential
difference) between the top and the bottom surface of the layer, i.e.

wðx; h1Þ � wðx;�h2Þ ¼ 2w0; /ðx; h1Þ � /ðx;�h2Þ ¼ �2V0; �1 < x < 1: ð4Þ
Since the piezoelectric strip in question are in a state of longitudinal shear deformation, or anti-plane

deformation with respect to the xy-plane, in this case one can take a plane normal to the z-axis as the plane
of concern, and so the following analysis is restricted to the strip in this plane. Under such circumstances,
there are only nonvanishing the out-of-plane displacement wðx; yÞ and the in-plane electric potential /ðx; yÞ,
which satisfy the basic governing field equations for anti-plane piezoelectricity, in the absence of body force
and free charge (Parton and Kudryavsev, 1988),

c44r2wþ e15r2/ ¼ 0;

e15r2w� e11r2/ ¼ 0;
ð5Þ

where c44 is the elastic stiffness measured in a constant electric field, e11 is the dielectric permittivity mea-
sured at a uniform strain, e15 is the piezoelectric constant of the piezoelectric strip, and r2 ¼ o2=ox2 þ
o2=oy2 represents the two-dimensional Laplacian operator.

Once functions w and / are determined from the given conditions, then the components of anti-plane
shear stress and in-plane electric displacement in a piezoelectric strip are obtainable in terms of the fol-
lowing constitutive equations:

szx ¼ c44czx � e15Ex; szy ¼ c44czy � e15Ey ; ð6Þ

Dx ¼ e15czx þ e11Ex; Dy ¼ e15czy þ e11Ey ; ð7Þ

where anti-plane strain and electric field in a piezoelectric strip are given as follows:

czx ¼
ow
ox

; czy ¼
ow
oy

; ð8Þ

Ex ¼ � o/
ox

; Ey ¼ � o/
oy

: ð9Þ

Fig. 1. Schematic of a through anti-plane shear crack in a piezoelectric strip.
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To seek the electroelastic field in a piezoelectric strip, the elastic and electric boundary conditions at
the crack surfaces must be furnished. It is evident that for mechanical field, the crack surfaces are free of
stress, i.e.

szyðx; 0þÞ ¼ szyðx; 0�Þ ¼ 0; jxj < a: ð10Þ

For electric field, there exist some different opinions on the electric boundary conditions at the crack
surfaces. One opinion assumes that the crack surfaces is impermeable to electric field (Pak, 1990, 1992;
Sosa, 1991, 1992; Suo et al., 1992; Wang, 1992; Zhong and Meguid, 1997; Chen and Shioya, 1999; etc.), and
another opinion assumes that the crack surfaces is permeable to electric field (Parton, 1976; Meguid and
Wang, 1998; Wang and Han, 1999; Wang, 2001; Yang, 2001; etc.). According to the analyses in Dunn
(1994), Sosa and Khutoryansky (1996) and Zhang and Tong (1996), the impermeable assumption may
give rise to a significant error in analyzing electroelastic field of a crack. The choice of between these two
types of electric boundary conditions is analyzed deeply from the viewpoint of energy balance in the
context of the Griffith fracture theory by Dascalu (1997). On the other hand, for anti-plane shear prob-
lems, the upper and lower surfaces of a crack contact each other, and they continue to contact under the
action of anti-plane mechanical loadings and in-plane electric loadings. Therefore, the permeable electric
boundary conditions will be assumed in the present paper. That is, both the electric potential and the
normal electric displacement are assumed to be continuous across the crack surfaces, which can be stated
below

/ðx; 0þÞ ¼ /ðx; 0�Þ; Dyðx; 0þÞ ¼ Dyðx; 0�Þ; jxj < a: ð11Þ

In effect, since Ex ¼ �o/=ox, it is easily found that the above electric boundary conditions are equivalent to
those adopted by Shindo et al. (1990, 1996, 1997, 2000) in a series of papers involving the electroelastic
analyses of cracks in a piezoelectric material, i.e.

Exðx; 0þÞ ¼ Exðx; 0�Þ ¼ Ec
xðx; 0Þ; Dyðx; 0þÞ ¼ Dyðx; 0�Þ ¼ Dc

yðx; 0Þ; jxj < a; ð12Þ

where the superscript c represents the electric quantities in the void inside the crack.
Meanwhile, the elastic and electric field should fulfil the following continuity conditions along the line

y ¼ 0:

wðx; 0þÞ ¼ wðx; 0�Þ; /ðx; 0þÞ ¼ /ðx; 0�Þ; jxjP a; ð13Þ

szyðx; 0þÞ ¼ szyðx; 0�Þ; Dyðx; 0þÞ ¼ Dyðx; 0�Þ; �1 < x < 1: ð14Þ
Due to the symmetry of the problem under consideration, it is sufficient to analyze the right-half portion,

i.e. x > 0. Therefore in the following the electroelastic field in the region x > 0 is concerned and that in the
remaining section can be directly given by symmetry.

In order to obtain the desired electroelastic field, it is convenient to separate the problem considered into
two subproblems, one corresponding to the piezoelectric strip with no crack and the other corresponding to
the piezoelectric strip with a crack for which the anti-plane shear stress applied at the crack surfaces are
prescribed as the negative of those produced by the former, and the strip boundaries are also governed by
appropriate conditions (see below). For the former, a uniform field is produced, in which the components
of anti-plane shear stresses and electric displacements can be expressed as:

szyðx; yÞ ¼ s0; Dyðx; yÞ ¼ D0 for case 1; ð15Þ

szyðx; yÞ ¼ s0; Dyðx; yÞ ¼
e15
c44

s0 þ e11

�
þ e215
c44

�
V0
h

for case 2; ð16Þ
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szyðx; yÞ ¼ c44

�
þ e215

e11

�
w0

h
� e15

e11
D0; Dyðx; yÞ ¼ D0 for case 3; ð17Þ

szyðx; yÞ ¼
c44w0 � e15V0

h
; Dyðx; yÞ ¼

e15w0 þ e11V0
h

for case 4: ð18Þ

For the latter, a singular field arises, which can be solved from the following electroelastic boundary
conditions:

at the line y ¼ 0,

szyðx; 0þÞ ¼ szyðx; 0�Þ ¼ �sðlÞ; /ðx; 0þÞ ¼ /ðx; 0�Þ; Dyðx; 0þÞ ¼ Dyðx; 0�Þ; jxj < a; ð19Þ

szyðx; 0þÞ ¼ szyðx; 0�Þ; wðx; 0þÞ ¼ wðx; 0�Þ; jxjP a; ð20Þ

/ðx; 0þÞ ¼ /ðx; 0�Þ; Dyðx; 0þÞ ¼ Dyðx; 0�Þ; jxjP a ð21Þ

and at the strip boundaries,

case 1: szyðx; h1Þ ¼ szyðx;�h2Þ ¼ 0; Dyðx; h1Þ ¼ Dyðx;�h2Þ ¼ 0; �1 < x < 1; ð22Þ

case 2: szyðx; h1Þ ¼ szyðx;�h2Þ ¼ 0; /ðx; h1Þ ¼ /ðx;�h2Þ ¼ 0; �1 < x < 1; ð23Þ

case 3: wðx; h1Þ ¼ wðx;�h2Þ ¼ 0; Dyðx; h1Þ ¼ Dyðx;�h2Þ ¼ 0; �1 < x < 1; ð24Þ

case 4: wðx; h1Þ ¼ wðx;�h2Þ ¼ 0; /ðx; h1Þ ¼ /ðx;�h2Þ ¼ 0; �1 < x < 1; ð25Þ

where sðlÞ represents the value of szyðx; 0Þ at the corresponding case, l ¼ 1, 2, 3, 4, given by Eqs. (15)–(18),
respectively.

From the viewpoint of fracture mechanics, of importance is the singular field disturbed by a crack.
Consequently, in what follows we restrict our attention to solving the singular field. To achieve this, an
integral transform technique is employed to reduce the latter posed by Eqs. (19)–(21) and one of Eqs. (22)–
(25) into dual integral equations. By use of the Fourier transform, it is easily shown that appropriate
solution of Eq. (5) can be expressed as the following integrals

wjðx; yÞ ¼
Z 1

0

½AjðnÞ coshðynÞ þ BjðnÞ sinhðynÞ
 cosðxnÞdn; xP 0; ð26Þ

/jðx; yÞ ¼
Z 1

0

½CjðnÞ coshðynÞ þ DjðnÞ sinhðynÞ
 cosðxnÞdn; xP 0; ð27Þ

where AjðnÞ; . . . ;DjðnÞ are unknown to be determined from given conditions, and j ¼ 1, 2 correspond to the
regions y P 0 and y6 0, respectively.

With the aid of constitutive equations, from Eqs. (26) and (27) it is not difficult to obtain the expressions
for the components of the stress, strain, electric displacement and electric field in terms of A; . . . ;D. For
example, we have

szyj ¼
Z 1

0

n½ðc44Aj þ e15CjÞ sinhðynÞ þ ðc44Bj þ e15DjÞ coshðynÞ
 cosðxnÞdn; ð28Þ

Dyj ¼
Z 1

0

n½ðe15Aj � e11CjÞ sinhðynÞ þ ðe15Bj � e11DjÞ coshðynÞ
 cosðxnÞdn: ð29Þ
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3. Solution procedure

In this section, our objective is to determine the singular electroelastic field induced by an anti-plane
shear crack and to give expressions for the relevant physical quantities including field intensity factors and
energy release rate. Here, without loss of generality, suppose that h1 P h2, which means that a crack may
not be located at the center of the strip, h1 and h2 being the distance between the crack surface and the top
boundary of the strip, and the crack surface and the bottom boundary of the strip, respectively.

First, from the continuity conditions along the line y ¼ 0, i.e.

szy1ðx; 0Þ ¼ szy2ðx; 0Þ; /1ðx; 0Þ ¼ /2ðx; 0Þ; Dy1ðx; 0Þ ¼ Dy2ðx; 0Þ; ð30Þ

we find

B1 ¼ B2; C1 ¼ C2; D1 ¼ D2: ð31Þ
Then one can easily show that the sliding displacement across the line y ¼ 0 and the stress component at the
line y ¼ 0 are expressed by the following integrals, respectively,

w1ðx; 0Þ � w2ðx; 0Þ ¼
Z 1

0

ðA1 � A2Þ cosðxnÞdn; xP 0; ð32Þ

szyjðx; 0Þ ¼
Z 1

0

nðc44B1 þ e15D1Þ cosðxnÞdn; xP 0: ð33Þ

Furthermore, for case 1, the boundary surfaces y ¼ h1 and y ¼ �h2 of the strip are free of stress and of
electric displacement, i.e. Eq. (22). Using Eqs. (28) and (29), from Eq. (22) we get

A1 sinhðh1nÞ þ B1 coshðh1nÞ ¼ 0; C1 sinhðh1nÞ þ D1 coshðh1nÞ ¼ 0; ð34Þ

A2 sinhðh2nÞ � B2 coshðh2nÞ ¼ 0; C2 sinhðh2nÞ � D2 coshðh2nÞ ¼ 0: ð35Þ
Putting Eq. (31) into Eqs. (34) and (35) yields

A2 ¼ �A1 tanðh1nÞ cothðh2nÞ; C2 ¼ C1 ¼ D1 ¼ D2 ¼ 0: ð36Þ
The remaining unknown function A1 can be determined from the remaining mechanical boundary

conditions, i.e. the first in Eq. (19) and the second in Eq. (20), which, in connection with Eqs. (32) and (33),
then become a pair of simultaneous dual integral equations for A1Z 1

0

1½ þ tanðh1nÞ cothðh2nÞ
A1ðnÞ cosðxnÞdn ¼ 0; jxjP a; ð37Þ

�c44

Z 1

0

nA1ðnÞ tanhðh1nÞ cosðxnÞdn ¼ �sð1Þ; jxj < a: ð38Þ

In general, it is difficult to obtain a closed-form solution of the resulting dual integral equations except
for a particular case where a crack is situated at the center of a strip, i.e. h1 ¼ h2, for which we shall give a
closed-form solution in the next section. Here we first study the case of h1 P h2, and the case of h1 6 h2 is
completely similar to the former. For this case, by using the techniques, outlined in Sneddon (1972) and
others, the dual integral equations can be transformed into a Fredholm integral equation of the second
kind. To achieve this, we choose A1ðnÞ given by

A1ðnÞ ¼
2

1þ tanðh1nÞ cothðh2nÞ

Z a

0

wðuÞJ0ðunÞdu; ð39Þ

where J0ð Þ denotes the Bessel function of the first kind of order zero and wðuÞ is an auxiliary function.
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Recalling the results (Gradshteyn and Ryzhik, 1980)Z 1

0

J0ðunÞ cosðxnÞdn ¼ 0; x > u ð40Þ

and

J0ðxnÞ ¼
2

p

Z x

0

cosðtnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � t2

p dt; ð41Þ

it is easily shown that Eq. (37) will be automatically satisfied. Eq. (38) then becomes the following Fredholm
integral equation of the second kind

wðxÞ þ
Z a

0

Kð1Þðx; uÞwðuÞdu ¼ xsð1Þ

c44
; 06 x < a ð42Þ

with

Kð1Þðx; uÞ ¼ x
Z 1

0

2

cothðh1nÞ þ cothðh2nÞ

�
� 1

�
nJ0ðunÞJ0ðxnÞdn: ð43Þ

For case 2, the boundary surfaces y ¼ h1 and y ¼ �h2 of the strip are stress-free and grounded, i.e. Eq.
(23). A completely similar procedure leads to a pair of dual integral equations for A1 for case 2, which are
the same as the ones for case 1 and hence the Fredholm integral equation for the case 2 is also governed by
Eq. (42). It is noted that the only discrepancy between electroelastic fields for the cases 1 and 2 lies in their
individual uniform electroelastic fields.

For case 3, the boundary surfaces y ¼ h1 and y ¼ �h2 of the strip are fixed and free of electric dis-
placement, i.e. Eq. (24). In this case from Eq. (24) we have

A1 coshðh1nÞ þ B1 sinhðh1nÞ ¼ 0; ð44Þ

A2 coshðh2nÞ � B2 sinhðh2nÞ ¼ 0; ð45Þ

ðe15A1 � e11C1Þ sinhðh1nÞ þ ðe15B1 � e11D1Þ coshðh1nÞ ¼ 0; ð46Þ

�ðe15A2 � e11C2Þ sinhðh2nÞ þ ðe15B2 � e11D2Þ coshðh2nÞ ¼ 0; ð47Þ
which, together with Eq. (31), can be solved in terms of A1

A2 ¼ �A1 cothðh1nÞ tanðh2nÞ; ð48Þ

B1 ¼ B2 ¼ �A1 cothðh1nÞ; ð49Þ

C1 ¼ C2 ¼
e15
e11

A1 cothðh1nÞ tanðh1nÞ½ � tanðh2nÞ
; ð50Þ

D1 ¼ D2 ¼
e15
e11

A1 cothðh1nÞ tanðh1nÞ tanðh2nÞ½ � 1
: ð51Þ

Upon substitution of these into Eqs. (32) and (33) yields a pair of dual integral equations for A1,Z 1

0

1½ þ cothðh1nÞ tanðh2nÞ
A1ðnÞ cosðxnÞdn ¼ 0; jxjP a; ð52Þ

Z 1

0

n 1

�
þ e215
c44e11

1ð � tanhðh1nÞ tanhðh2nÞÞ
�
cothðh1nÞA1ðnÞ cosðxnÞdn ¼ sð3Þ

c44
; jxj < a: ð53Þ
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Similarly, if we take

A1ðnÞ ¼
2

1þ cothðh1nÞ tanðh2nÞ

Z a

0

wðuÞJ0ðunÞdu; ð54Þ

Eq. (52) is automatically satisfied and Eq. (53) is then transformed to

wðxÞ þ
Z a

0

Kð3Þðx; uÞwðuÞdu ¼ xsð3Þ

c44
; 06 x < a ð55Þ

with

Kð3Þðx; uÞ ¼ x
Z 1

0

2c44e11 þ e215 1� tanhðh1nÞ tanhðh2nÞð Þ
c44e11 tanhðh1nÞ þ tanhðh2nÞð Þ

�
� 1

�
nJ0ðunÞJ0ðxnÞdn: ð56Þ

For case 4, the boundary surfaces y ¼ h1 and y ¼ �h2 of the strip are fixed and grounded, i.e. Eq. (25).
Using Eqs. (26) and (27) we get

A1 coshðh1nÞ þ B1 sinhðh1nÞ ¼ 0; C1 coshðh1nÞ þ D1 sinhðh1nÞ ¼ 0; ð57Þ

A2 coshðh2nÞ � B2 sinhðh2nÞ ¼ 0; C2 coshðh2nÞ � D2 sinhðh2nÞ ¼ 0: ð58Þ

Thus, we deduce to

A2 ¼ �A1 cothðh1nÞ tanðh2nÞ; C2 ¼ �C1 cothðh1nÞ tanðh2nÞ ð59Þ

from which in connection with Eq. (31), it follows that

C2 ¼ C1 ¼ D1 ¼ D2 ¼ 0: ð60Þ

Consequently, one can easily show in this case that the remaining mechanical boundary conditions, i.e.
the first in Eq. (19) and the second in Eq. (20), in connection with Eqs. (32) and (33), result into a pair of
simultaneous dual integral equations for A1 as followsZ 1

0

1½ þ cothðh1nÞ tanðh2nÞ
A1ðnÞ cosðxnÞdn ¼ 0; jxjP a; ð61Þ

�c44

Z 1

0

nA1ðnÞ cothðh1nÞ cosðxnÞdn ¼ �sð4Þ; jxj < a: ð62Þ

Likewise, if we take A1ðnÞ in the form of Eq. (54), Eq. (61) is automatically satisfied and Eq. (62) is
transformed to

wðxÞ þ
Z a

0

Kð4Þðx; uÞwðuÞdu ¼ xsð4Þ

c44
; 06 x < a ð63Þ

with

Kð4Þðx; uÞ ¼ x
Z 1

0

2

tanhðh1nÞ þ tanhðh2nÞ

�
� 1

�
nJ0ðunÞJ0ðxnÞdn: ð64Þ

For the purpose of computation, introducing dimensionless variables

�xx ¼ x
a
; �uu ¼ u

a
; �wwð�xxÞ ¼ wða�xxÞ

a
; ð65Þ

the Fredholm integral equations obtained above for all the four cases can be rewritten in dimensionless
form
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�wwð�xxÞ þ
Z 1

0

�KKðlÞð�xx; �uuÞ �wwð�uuÞd�uu ¼ �xxsðlÞ

c44
; 06�xx < 1; l ¼ 1; 2; 3; 4; ð66Þ

where

�KKðlÞð�xx; �uuÞ ¼ d2�xx
Z 1

0

gkðlÞðgÞJ0ð�uugdÞJ0ð�xxgdÞdg ð67Þ

with

kð1ÞðgÞ ¼ kð2ÞðgÞ ¼ 1

sinhðgÞ e�g

�
� cosh

a � 1

a þ 1
g

� ��
; ð68Þ

kð3ÞðgÞ ¼ 1

sinhðgÞ 1

��
þ 2e215
c44e11

�
cosh

a � 1

a þ 1
g

� �
þ e�g

�
; ð69Þ

kð4ÞðgÞ ¼ 1

sinhðgÞ e�g

�
þ cosh

a � 1

a þ 1
g

� ��
; ð70Þ

a ¼ h1
h2

; d ¼ a
2h

: ð71Þ

Once the auxiliary function �wwð�xxÞ is determined from Eq. (66), the entire electroelastic field is obtainable.
Due to the complicated form of the kernel, it seems unlikely that a closed-form solution can be determined
for �wwð�xxÞ and therefore one must appeal to either numerical or approximate methods for solving this
equation. In effect, by replacing Eq. (66) with a finite system of algebraic equations, a solution to Eq. (66)
may be determined by numerical schemes (Baker, 1978).

In particular, the case of small parameter d is of much interest in practical applications. For this case an
approximate solution to Eq. (66) can be constructed by using an iterative approach as follows. For small
values of d � 1, we propose a solution to Eq. (66) in the form

�wwð�xxÞ ¼ sðlÞ

c44

X1
n¼0

d2n �ww2nð�xxÞ: ð72Þ

Using the expression of J0ðxÞ in power series form, we find

J0ð�uugdÞJ0ð�xxgdÞ ¼ 1� 1

22
ð�uu2 þ �xx2Þg2d2 þ 1

26
ð�uu4 þ 4�uu2�xx2 þ �xx4Þg4d4 þOðd6Þ; ð73Þ

which permits us to write the kernel (67), �KKð�xx; �uuÞ, in Eq. (66) in power series form

�KKð�xx; �uuÞ ¼ �xx
X1
n¼0

g2nð�xx; �uuÞd2nþ2 ð74Þ

with

g0ð�xx; �uuÞ ¼ I ðlÞ0 ; g2ð�xx; �uuÞ ¼
1

22
I ðlÞ1 ð�xx2 þ �uu2Þ; g4ð�xx; �uuÞ ¼

1

26
I ðlÞ2 ð�xx4 þ 4�xx2�uu2 þ �uu4Þ; ð75Þ

where

I ðlÞn ¼ ð�1Þn
Z 1

0

kðlÞðgÞg2nþ1 dg: ð76Þ

Now substituting �wwð�xxÞ and �KKð�xx; �uuÞ, respectively, from Eqs. (72) and (74) into Eq. (66) and comparing the
coefficients of powers of d from both sides, we obtain an approximate solution, given by Eq. (72), where
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�ww0ð�xxÞ ¼ �xx; ð77Þ

�ww2nð�xxÞ ¼ ��xx
Xn
m¼1

Z 1

0

g2m�2ð�xx; �uuÞ �ww2n�2mð�uuÞd�uu; n ¼ 1; 2; 3; . . . ð78Þ

By carrying out the iterative process up to �ww6ð�xxÞ, we get

�ww2ð�xxÞ ¼ �1
2
I ðlÞ0 �xx; ð79Þ

�ww4ð�xxÞ ¼ � 1

22
I ðlÞ1

1

4

 "
þ �xx2

2

!
� I ðlÞ0

� �2#
�xx; ð80Þ

�ww6ð�xxÞ ¼ � 1

23
I ðlÞ2

1

48

 "
þ �xx2

8
þ �xx4

16

!
� I ðlÞ0 I ðlÞ1

1

4

 
þ �xx2

2

!
þ I ðlÞ0 I ðlÞ0

� �2 
� I ðlÞ1

2

!#
�xx: ð81Þ

Therefore we obtain an approximate solution for small values of d to be

�wwð�xxÞ ¼ sðlÞ

c44
�ww0ð�xxÞ
h

þ �ww2ð�xxÞd2 þ �ww4ð�xxÞd4 þ �ww6ð�xxÞd6
i
þOðd8Þ: ð82Þ

In particular, �wwð1Þ can be evaluated approximately by

�wwð1Þ ¼ sðlÞ

c44
1

�
� 1

2
I ðlÞ0 d2 þ 1

22
I ðlÞ0

� �2�
� 3

4
I ðlÞ1

�
d4 � 1

23
I ðlÞ0

� �3�
� 5

4
I ðlÞ0 I ðlÞ1 þ 5

24
I ðlÞ2

�
d6 þOðd8Þ

�
; ð83Þ

where the values of I ðlÞn may be determined from the asymptotic expressions given in Appendix A.
For many purposes, it is desirable to determine field intensity factors and energy release rate. In

particular, in analyzing the stability of a crack in a piezoelectric material, they may be chosen as two
important parameters (Pak, 1990; Suo et al., 1992; Gao et al., 1997). Since field intensity factors and
energy release rate are closely related to the crack-tip field, it is natural to determine the asymptotic
expressions for electroelastic field near the crack tip. This is done in what follows. After neglecting certain
lower-order terms, the distribution of szyðx; 0Þ has the following asymptotic expression in the vicinity of the
crack tip

szy1ðx; 0þÞ ¼ szy2ðx; 0�Þ ¼ c44 �wwð1Þ
ffiffiffiffiffi
a
2r

r
þOð1Þ; r ¼ x� a ð0 < r=a � 1Þ; ð84Þ

which further allows us to determine the stress intensity factor at the crack tip

Ks
III ¼ lim

x!aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
szy1ðx; 0þÞ ¼ c44 �wwð1Þ

ffiffiffiffiffiffi
pa

p
: ð85Þ

By an analogous treatment, the asymptotic distributions of the components of electric displacement,
Dyðx; 0Þ, and anti-plane shear strain, czyðx; 0Þ, may be expressed in a unified form in terms of �wwð1Þ, i.e.

Dyðx; 0Þ ¼
KD

IIIffiffiffiffiffiffiffi
2pr

p þOð1Þ; czyðx; 0Þ ¼
Kc

IIIffiffiffiffiffiffiffi
2pr

p þOð1Þ; ð86Þ

where

KD
III ¼ e15 �wwð1Þ

ffiffiffiffiffiffi
pa

p
; Kc

III ¼ �wwð1Þ
ffiffiffiffiffiffi
pa

p
: ð87Þ

It is easily seen that

KD
III ¼ e15K

c
III; Ks

III ¼ c44K
c
III: ð88Þ
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As expected, for all the four cases, the intensity factors of stress, strain, and electric displacement exhibit
the square-root singularity at the crack tip, while the tangent component of electric field always vanishes
along y ¼ 0. Moreover, for cases 1 and 2, the kernel of the governing integral equation (66) is independent
of material constants, and it further reveals that in these two cases the stress intensity factor Ks

III is inde-
pendent of material constants, and depends only on the geometric parameters such as the dimensionless
crack length a=h and the crack position h1=h2. For cases 3 and 4, field intensity factors depends not only on
material constants, but also on the geometric parameters.

As a check, in the limiting case as h1 ! 1, h2 ! 1 in Eq. (67), we get �KKðlÞð�xx; �uuÞ ¼ 0, which then implies
the solution of Eq. (66) to be �wwð�xxÞ ¼ �xxs0=c44, and furthermore we can derive the corresponding electro-
elastic field, which is identical to that for a crack in an infinite piezoelectric material by Zhang and Tong
(1996).

From the viewpoint of Griffith energy balance, the energy release rate, defined as the change of energy of
a cracked medium for an infinitesimal crack extension, is also a significant fracture criterion in piezoelectric
materials (Pak, 1990; Suo et al., 1992; Gao et al., 1997). Assume that under applied loadings the crack tip
advances along the crack plane from x ¼ a to aþ da ðda � aÞ. Then the energy release rate per unit length
during this process is given by

GIII ¼ lim
da!0

1

2da

Z da

0

szyðr; 0ÞDwðda
�

� r; 0Þ þ Dyðr; 0ÞD/ðda� r; 0Þ
�
dr; ð89Þ

where r denotes the distance from the crack tip.
It is noted that electric potential is continuous across the crack for a permeable crack, and consequently

it has no contribution on energy release rate. As a result, values of the energy release rate coincide with
values of the mechanical strain energy release rate proposed by Park and Sun (1995a,b).

To evaluate the energy release rate, it is necessary to determine the crack sliding displacement across the
crack surfaces Dwðx; 0Þ ð0 < x < aÞ, in particular the asymptotic expression for Dwðx; 0Þ near the crack tip,
x ¼ a� r ð0 < r=a � 1Þ: After some algebra, the final result is

Dwðx; 0Þ ¼ w1ðx; 0þÞ � w2ðx; 0�Þ ¼ 2 �wwð1Þ
ffiffiffiffiffiffiffi
2ar

p
þOðrÞ; r ¼ a� x ð0 < r=a � 1Þ: ð90Þ

With the asymptotic expressions for szyðx; 0Þ and Dwðx; 0Þ at hand, the integral given by Eq. (89) can be
directly calculated, which is expressed as follows

GIII ¼
pa
2
c44½ �wwð1Þ
2 ¼

1

2c44
Ks

III

� �2
: ð91Þ

From the above, we conclude that for a cracked piezoelectric strip of stress-free boundary, energy release
rate at the crack tip is independent of electric loadings, while for a cracked piezoelectric strip of clamped
boundary, energy release rate at the crack tip depends not only on mechanical loading but also on electric
loadings. These conclusions are in accordance with those for a central crack in a piezoelectric strip in
Shindo et al. (1997), and those for a crack in an infinite piezoelectric material in Zhang and Tong (1996).

4. Crack situated at the center of a piezoelectric strip

Generally speaking, a closed-form solution is the desired for a majority of problems, and however one
usually has to appeal to approximate or numerical approaches for solving some practical problems due to
mathematical complications. In this section, a closed-form solution can be obtained for a particular case
of a crack situated at the center of a piezoelectric strip, i.e. h1 ¼ h2: In what follows for convenience cases
1 and 4 will be studied, respectively.

X.-F. Li / International Journal of Solids and Structures 39 (2002) 1097–1117 1107



First we consider case 1. In this case, if introducing a new function

uðxÞ ¼
Z a

x

wðuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � x2

p du; ð92Þ

we find that by virtue of Eq. (41), Eq. (39) is then rewritten as the following form

A1ðnÞ ¼
2

p

Z a

0

uðxÞ cosðxnÞdx; ð93Þ

which, in fact, is derived as well in an alternative approach by application of inverted Fourier cosine
transform to Eq. (37). In addition, from Eqs. (32) and (37) we observe

uðxÞ ¼ 1
2
w1ðx; 0þÞ½ � w2ðx; 0�Þ
 ¼ 1

2
Dwðx; 0Þ ð94Þ

and so uðxÞ ¼ 0, xP a:
Substituting Eq. (93) into Eq. (38) yields an integral equation for uðxÞ

2

p

Z a

0

uðuÞdu
Z 1

0

n tanhðhnÞ cosðunÞ cosðxnÞdn ¼ sð1Þ

c44
; jxj < a: ð95Þ

Recalling the known result (Gradshteyn and Ryzhik, 1980)Z 1

0

tanhðhnÞ cosðtnÞ
n

dn ¼ ln coth
pt
4h

� ���� ���; ð96Þ

we findZ 1

0

n tanhðhnÞ cosðunÞ cosðxnÞdn ¼ 1

2

d

dx
d

du
ln

sinhðbxÞ þ sinhðbuÞ
sinhðbxÞ � sinhðbuÞ

����
����; ð97Þ

which allows us to rewrite Eq. (95) in the form

1

p

Z a

0

u0ðuÞ ln sinhðbxÞ þ sinhðbuÞ
sinhðbxÞ � sinhðbuÞ

����
����du ¼ xsð1Þ

c44
; 06 x < a; ð98Þ

where b ¼ p=2h, the integration by parts in deriving the above equation and uðaÞ ¼ 0 have been employed.
Eq. (98) is a singular integral equation with logarithmic kernel. With the aid of the known results

(Cooke, 1970; Estrada and Kanwal, 1989), the half of the sliding shear displacement across the crack
surfaces is found to be

uðxÞ ¼ � 2sð1Þ

pc44

Z a

x

F ðp=2; tanhðbuÞÞ sinhðbuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ðbuÞ � sinh2ðbxÞ

q du; 06 x < a ð99Þ

and the anti-plane shear stress can also be given explicitly as follows

szyðx; 0Þ ¼
2sð1Þ

p
coshðbaÞ tanhðbxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ðbxÞ � sinh2ðbaÞ

q F
p
2
; tanhðbaÞ

� �"
� sinh2ðbxÞ � sinh2ðbaÞ

sinh2ðbxÞ cosh2ðbaÞ

� P
p
2
;

 
� tanh2ðbaÞ

tanh2ðbxÞ
; tanhðbaÞ

!#
; x > a; ð100Þ

where F and P are the elliptical integrals of the first kind and the third kind, respectively. It is further seen
easily from Eqs. (28) and (29) that the normal component of electric displacement is expressed explicitly,
which is related to the anti-plane shear stress component by
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Dyðx; 0Þ ¼
e15
c44

szyðx; 0Þ; x > a: ð101Þ

As expected, the anti-plane shear stress, electric displacement exhibit the usual square-root singularity
near the crack tip, and their intensity factors and energy release rate in this case as well can be obtained in
explicit form by a straight calculation,

Ks
III ¼ sð1Þ

ffiffiffiffiffiffi
pa

p 2

p
F

p
2
; tanhðbaÞ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhðbaÞ

ba

r
; ð102Þ

KD
III ¼

e15
c44

sð1Þ
ffiffiffiffiffiffi
pa

p 2

p
F

p
2
; tanhðbaÞ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhðbaÞ

ba

r
ð103Þ

and

GIII ¼
sð1Þ
� �2

pa
2c44

2

p
F

p
2
; tanhðbaÞ

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanhðbaÞ

ba

r" #2
: ð104Þ

If setting h ! 1, i.e. b ! 0, the above results revert to those for a permeable crack embedded in an
infinite piezoelectric material in Zhang and Tong (1996).

Now we turn our attention to case 4. By an entirely analogous treatment, in view of Eq. (93), Eq. (62)
becomes

2

p

Z a

0

uðuÞdu
Z 1

0

n cothðhnÞ cosðunÞ cosðxnÞdn ¼ sð4Þ

c44
; jxj < a: ð105Þ

Recalling the known result (Gradshteyn and Ryzhik, 1980)Z 1

0

cothðhnÞ cosðtnÞ
n

dn ¼ � ln 2 sinh
pt
2h

� ���� ��� ð106Þ

and proceeding as before, we findZ 1

0

n cothðhnÞ cosðunÞ cosðxnÞdn ¼ 1

2

d

dx
d

du
ln

tanhðbxÞ þ tanhðbuÞ
tanhðbxÞ � tanhðbuÞ

����
����; ð107Þ

which allows us to rewrite Eq. (105) in the form

1

p

Z a

0

u0ðuÞ ln tanhðbxÞ þ tanhðbuÞ
tanhðbxÞ � tanhðbuÞ

����
����du ¼ xsð4Þ

c44
; 06 x < a; ð108Þ

where b ¼ p=2h:
Using the known results of a singular integral equation with logarithmic kernel (Cooke, 1970; Estrada

and Kanwal, 1989), the solution of Eq. (108), i.e. the half of the sliding shear displacement across the crack
surfaces, is found to be

uðxÞ ¼ � sð4Þ

bc44
cos�1 coshðbxÞ

coshðbaÞ

� �
; 06 x6 a ð109Þ

and the components of anti-plane shear stress and electric displacement are given in explicit form,
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szyðx; 0Þ ¼ sð4Þ
sinhðbxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh2ðbxÞ � sinh2ðbaÞ
q

2
64 � 1

3
75; x > a; ð110Þ

Dyðx; 0Þ ¼
e15sð4Þ

c44

sinhðbxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2ðbxÞ � sinh2ðbaÞ

q
2
64 � 1

3
75; x > a: ð111Þ

From these expressions for szyðx; 0Þ and Dyðx; 0Þ, the anti-plane shear stress and electric displacement
also exhibit the usual square-root singularity near the crack tip, and the intensity factors of stress and
electric displacement are respectively

Ks
III ¼ sð4Þ

ffiffiffiffiffiffi
pa

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h
pa

tanh
pa
2h

� �r
; ð112Þ

KD
III ¼

e15
c44

sð4Þ
ffiffiffiffiffiffi
pa

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2h
pa

tanh
pa
2h

� �r
: ð113Þ

The energy release rate in this case is

GIII ¼
sð4Þ
� �2

h
c44

tanh
pa
2h

� �
; ð114Þ

which indicates that in view of Eq. (18) both the mechanical loading and electric loading have influence on
the energy release rate for the case of clamped boundaries. The energy release rate for a permeable crack is
always positive, irrespective of positive or negative electric field, and the magnitude, however, varies with
the direction of electric field. In other words, the change of direction of electric field will enhance or retard
the propagation of a crack.

The results obtained by Zhang and Tong (1996) are recovered again from a limiting case, h ! 1, of the
present results. On the other hand, for another limiting case, i.e. a semi-infinite crack lying in the center of a
piezoelectric strip, the electroelastic field can be straightforwardly obtained by a limiting procedure from
the above results. That is, replacing x with aþ x1 in the electroelastic field given above, and then setting
a ! 1, we find that analytical expressions for the desired anti-plane shear stress and electric displacement
are respectively

szyðx1; 0Þ ¼ sð4Þ
ebx1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinhðbx1Þ
p
"

� 1

#
; x1 > 0; ð115Þ

Dyðx1; 0Þ ¼
e15sð4Þ

c44

ebx1=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðbx1Þ

p
"

� 1

#
; x1 > 0; ð116Þ

which allow us to evaluate the intensity factors of stress and electric displacement near the crack tip as

Ks
III ¼ sð4Þ

ffiffiffiffiffi
2h

p
; KD

III ¼
e15sð4Þ

c44

ffiffiffiffiffi
2h

p
ð117Þ

and the energy release rate as

GIII ¼
sð4Þ
� �2

h
c44

: ð118Þ
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5. Results and discussion

Numerical results for the normalized energy release rate GIII=G1, G1 being the energy release rate as
h1 ! 1 and h2 ! 1, are presented. It is noted that in the expression for G1 for cases 3 and 4, w0=h and
V0=h are understood as constants c0 and E0, respectively, as h ! 1. Taking into account

GIII=G1 ¼ c44
sðlÞ

�wwð1Þ
h i2

¼ �ww0ð1Þ
h

þ d2 �ww2ð1Þ þ � � � þ d2n �ww2nð1Þ þOðd2nþ2Þ
i2
; ð119Þ

where �ww0ð1Þ; �ww2ð1Þ; . . . ; are given by Eqs. (77) and (79), etc., it is easily seen that GIII=G1 is independent of
material constants except for case 3.

Theoretically, the higher the order of d in the terms appearing in the above expression is, the more
accurate approximate value of GIII=G1 is. However, for a given order of d, experience shows that it is the
best to take

GIII=G1 ¼ �ww0ð1Þ
h

þ d2 �ww2ð1Þ þ � � � þ 1
2
d2n �ww2nð1Þ

i2
ð120Þ

instead of

GIII=G1 ¼ �ww0ð1Þ
h

þ d2 �ww2ð1Þ þ � � � þ d2n �ww2nð1Þ
i2
: ð121Þ

This is demonstrated in Figs. 2 and 3 for cases 1 and 4, respectively, in which the solid line is generated
from the analytical expressions

GIII=G1 ¼ 2

p
F

p
2
; tanh

pa
2h

� �� �� �2
2h
pa

tanh
pa
2h

� �
ð122Þ

for case 1 and

GIII=G1 ¼ 2h
pa

tanh
pa
2h

� �
ð123Þ

for case 4, and the other lines are generated from some approximate expressions (120) and (121) for n ¼ 3
and 2.

Fig. 2. Comparison of exact value and approximate value of the normalized energy release rate for case 1.
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Evaluating GIII=G1 by using Eq. (120), Figs. 4–6 show that the variation of the normalized energy re-
lease rate GIII=G1 versus the normalized crack length a=h when the ratio h1=h2 ¼ 0:25, 0.5, 1, 2, 4, for cases
1, 3, and 4, respectively. It is observed that with increasing a=h, GIII=G1 increases for a piezoelectric strip of
stress-free boundary, and decreases for a strip of clamped boundary. In Figs. 7–9, the variation of GIII=G1
versus the crack position, denoted as h1=h2, is plotted with a=h ¼ 0:01, 0.1, 0.3 for cases 1, 3, and 4, re-
spectively. From these figures it is found that when a crack is located at the center of a piezoelectric strip,
GIII=G1 arrives at the minimum for the case of stress-free boundary and the maximum for the case of
clamped boundary. As a result, we conclude that a central crack in a piezoelectric strip of stress-free
boundary is more easy to extend than an eccentric crack, while an eccentric crack in a piezoelectric strip of
clamped boundary is more easy to extend than a central crack.

For case 3, the variation of GIII=G1 versus the electromechanical coupling factor e15=ðc44e11Þ1=2 is pre-
sented graphically for different crack position h1=h2 and dimensionless crack length a=h, which reveals that
the electromechanical coupling factor has an apparent influence on the normalized energy release rate
GIII=G1: In principle, GIII=G1 decreases as e15=ðc44e11Þ1=2 increases (Fig. 10).

Fig. 3. Comparison of exact value and approximate value of the normalized energy release rate for case 4.

Fig. 4. Variation of the normalized energy release rate GIII=G1 versus the dimensionless crack length a=h for several different crack

positions h1=h2 ¼ 0:25, 0.5, 1, 2, 4 for case 1.

1112 X.-F. Li / International Journal of Solids and Structures 39 (2002) 1097–1117



6. Conclusions

The problem involving a piezoelectric strips with a through anti-plane shear crack is analyzed under the
action of four cases of combined electromechanical loadings. Using an integral transform technique, dual
integral equations resulting from the mixed boundary value problem are further converted into a Fredholm
integral equation for a new auxiliary function, which is solved analytically by an approximate method. The
intensity factor of electroelastic field and the energy release rate are explicitly expressed in terms of the
introduced auxiliary function. For a crack lying at the center of a piezoelectric strip, closed-form solutions
for cases 1 and 4 are obtained, respectively. The results indicate that the energy release rate is independent
of electric loadings for a piezoelectric strip of stress-free boundary and depends on both electric loadings
and mechanical loadings for a piezoelectric strip of clamped boundary. Numerical results are presented
graphically to show the dependance of field intensity factors and energy release rate on material constants
and geometric parameters.

Fig. 5. Variation of the normalized energy release rate GIII=G1 versus the dimensionless crack length a=h for several different crack

positions h1=h2 ¼ 0:25, 0.5, 1, 2, 4 for case 3.

Fig. 6. Variation of the normalized energy release rate GIII=G1 versus the dimensionless crack length a=h for several different crack

positions h1=h2 ¼ 0:25, 0.5, 1, 2, 4 for case 4.
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Appendix A

Using the following asymptotic relation

g
sinhðgÞ ¼ ð1þ 0:76734gÞe�2:7316g þ 2ge�g;

Fig. 7. Variation of the normalized energy release rate GIII=G1 versus the crack position h1=h2 for dimensionless crack length

a=h ¼ 0:05, 0.1, 0.3 for case 1.

Fig. 8. Variation of the normalized energy release rate GIII=G1 versus the crack position h1=h2 for dimensionless crack length

a=h ¼ 0:05, 0.1, 0.3 for case 3.
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which is established by Keer and Lin (1987), who treated the crack problem of in an elastic layer of fixed
surfaces, one can obtain a simple, approximate, analytical formula for evaluating I ðlÞn , which can evaluated
by separating into two parts Mn and Nn,

Mn ¼
Z 1

0

g2nþ1

sinhðgÞ e
�g dg;

Nn ¼
Z 1

0

g2nþ1

sinhðgÞ cosh
a � 1

a þ 1
g

� �
dg;

where Mn and Nn have the following asymptotic expressions:

Mn ¼
2nð Þ!
2

2ð1:206þ 0:411nÞ
3:73162nþ1

�
þ 2nþ 1

4n

�

Fig. 9. Variation of the normalized energy release rate GIII=G1 versus the crack position h1=h2 for dimensionless crack length

a=h ¼ 0:05, 0.1, 0.3 for case 4.

Fig. 10. Variation of the normalized energy release rate GIII=G1 versus the electromechanical coupling factor e15=ðc44e11Þ1=2 for dif-

ferent crack position h1=h2 and dimensionless crack length a=h for case 3.
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