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Abstract

The electroelastic analysis of a piezoelectric strip with an anti-plane shear crack whose surfaces are parallel to the
strip boundaries is made. Four cases of combined electromechanical loadings applied at the strip boundaries are
considered. For the case of a crack lying at the center of a strip, the electroelastic field, field intensity factors, and energy
release rate can be determined in explicit form via solving a resulting singular integral equation. For other cases, they
can be given in terms of an auxiliary function, which is obtained as a power series of J via solving a resulting Fredholm
integral equation using the iterative method, 20 being the ratio of the crack length over the strip width. Some numerical
results are presented graphically to show the influence of crack length and crack position on the normalized energy
release rate. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Due to the intrinsic coupling characteristics between electric and elastic behaviors, piezoelectric materials
have been used widely in technology such as transducers, actuators, sensors, etc. Great progress on the
study of electroelastic field disturbed by cracks in a piezoelectric material has been made in recent years.
Considerable researches in this area are mainly focused on determining the electroelastic field under various
different boundary conditions within the framework of the theory of reigning linear piezoelectricity. Many
theoretical solutions of crack problems have been derived under the assumption of several different electric
boundary conditions at the crack surfaces (see, for example, Pak, 1990, 1992; Sosa, 1991, 1992; Suo et al.,
1992; Wang, 1992; Dunn, 1994; Park and Sun, 1995a; Dascalu and Maugin, 1995; Sosa and Khutoryansky,
1996; Zhang and Tong, 1996; Zhang et al., 1998; Zhong and Meguid, 1997; Wang and Han, 1999; Chen and
Shioya, 1999; Yang, 2001).

The above-mentioned solutions are mainly related to internal cracks embedded in a piezoelectric ma-
terial. In general, in engineering applications the structure of piezoelectric devices is frequently met as a
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layered medium. Therefore, to secure the structural integrity of these piezoelectric devices, the problem
posed with a layered piezoelectric medium containing cracks is of much interest. As a result, determining
the electric and elastic behaviors disturbed by a crack in a layered piezoelectric material, in particular in the
close vicinity of the through crack tip, is prerequisite. For a piezoelectric layer or strip with a crack, Shindo
and coworkers made systematic investigation on the electroelastic analysis. The problems involving a
central permeable crack parallel to and perpendicular to the strip boundaries have been studied by Shindo
et al. (1990, 2000), respectively. Furthermore, they also investigated the corresponding electroelastic
problems for a central anti-plane shear crack (Shindo et al., 1996, 1997). More recently, the electroelastic
analysis of a rectangular sheet containing a central permeable crack subjected to anti-plane electrome-
chanical loadings has been made by Kwon and Lee (2000), and the problem of a piezoelectric strip with a
crack under in-plane electromechanical loadings has been analyzed by Wang et al. (2000), who compared
the results based on the permeability assumption with those based on the impermeability assumption. The
interface crack problem of a layered bimaterial composed of a piezoelectric material and a purely elastic
orthotropic medium has been considered by Narita and Shindo (1999).

This paper is concerned with the problem of an internal anti-plane shear crack embedded a piezoelectric
strip subjected to four cases of combined electromechanical loadings. The crack surfaces are assumed to be
parallel to the boundary surfaces of the strip and the crack is not necessarily located at the center of a strip.
Using the integral transform technique, the associated mixed boundary value problem is reduced to dual
integral equations, which are further transformed into a Fredholm integral equation by introducing an
auxiliary function. The iterative method for seeking an approximate solution is employed to solve the
resulting Fredholm integral equation in this paper, which is in contrast to those adopted by Shindo et al.
(1990, 1997), Shin et al. (2000) and Wang et al. (2000), who determined numerically the electroelastic field
via solving numerically a Fredholm integral equation. Then electroelastic field, field intensity factors and
energy release rate as well, are given explicitly in terms of the auxiliary function. In particular, for a special
case of a crack lying at the center of a strip, a closed-form solution is obtained via solving analytically a
singular integral equation. Finally, some numerical results are presented graphically to show the effects of
the crack position and the crack length on the normalized energy release rate.

2. Statement of the problem and basic theory

Consider a piezoelectric layer which has infinite extent in the xz-plane and finite size of thickness 2/
(2h = hy + hy) along the y-axis direction. A through crack of length 24 is located at the plane y = 0, and the
crack boundaries are parallel to the z-axis, as shown in Fig. 1. Here Cartesian coordinates x, y, z are the
principal axes of the material symmetry while the z-axis is oriented in the poling direction of the piezo-
electric strip. Four possible cases of combined electromechanical loadings will be considered. They are

Case 1: uniform longitudinal shear stresses and constant electric displacements at the top and bottom
surfaces of the layer, i.e.

Ty (X, hy) = 1oy (x, —ha) = 19,  D,(x, 1) = Dy(x, —hy) = Dy, —00 < x < 00; (1)

Case 2: uniform longitudinal shear stresses at the top and bottom boundaries and constant voltage (or
electric potential difference) between the top and the bottom surface of the layer, i.e.

sz(xahl) = sz('x’ _hZ) = 7o, ¢(xvhl) - (]5()(,', _hZ) = _2V07 —00 <x < Q3 (2)

Case 3. constant relative sliding displacement along the z-axis between the top and the bottom surface
and constant electric displacements at the top and bottom surfaces of the layer, i.e.

w(x, hy) — w(x, —hy) = 2wy, D,(x,h) = D,(x, —hy) = Dy, —00 < x < 005 (3)
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Fig. 1. Schematic of a through anti-plane shear crack in a piezoelectric strip.

Case 4. constant relative sliding displacement along the z-axis and the voltage (or electric potential
difference) between the top and the bottom surface of the layer, i.e.

w(x, hy) — w(x, —hy) = 2wy,  ¢d(x, hy) — d(x, —hy) = =2V, —00 < x < 00. 4)

Since the piezoelectric strip in question are in a state of longitudinal shear deformation, or anti-plane
deformation with respect to the xy-plane, in this case one can take a plane normal to the z-axis as the plane
of concern, and so the following analysis is restricted to the strip in this plane. Under such circumstances,
there are only nonvanishing the out-of-plane displacement w(x, y) and the in-plane electric potential ¢ (x, y),
which satisfy the basic governing field equations for anti-plane piezoelectricity, in the absence of body force
and free charge (Parton and Kudryavsev, 1988),

044V2w + 615V2¢ == 0,

5
615VZW—811v2¢ :0, ( )

where cyy is the elastic stiffness measured in a constant electric field, ¢;; is the dielectric permittivity mea-
sured at a uniform strain, e;s is the piezoelectric constant of the piezoelectric strip, and V? = 8%/0x* +
0?/dy? represents the two-dimensional Laplacian operator.

Once functions w and ¢ are determined from the given conditions, then the components of anti-plane
shear stress and in-plane electric displacement in a piezoelectric strip are obtainable in terms of the fol-
lowing constitutive equations:

Tox = C4aY . — elSExv Ty = C44sz - elSEy; (6)
D, = eisy,, + enky, D, =eisy, +enk,, (7)

where anti-plane strain and electric field in a piezoelectric strip are given as follows:

o
‘J)zx - ax 9 yzy - ay )

0¢ 0¢
* o’ dy
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To seek the electroelastic field in a piezoelectric strip, the elastic and electric boundary conditions at
the crack surfaces must be furnished. It is evident that for mechanical field, the crack surfaces are free of
stress, 1.e.

Ty (x,07) = 17,,(x,07) =0, |x] <a. (10)

For electric field, there exist some different opinions on the electric boundary conditions at the crack
surfaces. One opinion assumes that the crack surfaces is impermeable to electric field (Pak, 1990, 1992;
Sosa, 1991, 1992; Suo et al., 1992; Wang, 1992; Zhong and Meguid, 1997; Chen and Shioya, 1999; etc.), and
another opinion assumes that the crack surfaces is permeable to electric field (Parton, 1976; Meguid and
Wang, 1998; Wang and Han, 1999; Wang, 2001; Yang, 2001; etc.). According to the analyses in Dunn
(1994), Sosa and Khutoryansky (1996) and Zhang and Tong (1996), the impermeable assumption may
give rise to a significant error in analyzing electroelastic field of a crack. The choice of between these two
types of electric boundary conditions is analyzed deeply from the viewpoint of energy balance in the
context of the Griffith fracture theory by Dascalu (1997). On the other hand, for anti-plane shear prob-
lems, the upper and lower surfaces of a crack contact each other, and they continue to contact under the
action of anti-plane mechanical loadings and in-plane electric loadings. Therefore, the permeable electric
boundary conditions will be assumed in the present paper. That is, both the electric potential and the
normal electric displacement are assumed to be continuous across the crack surfaces, which can be stated
below

$(x,07) = d(x,07),  Dy(x,07) =Dy(x,07), [ <a (11)

In effect, since E, = —0¢/0x, it is easily found that the above electric boundary conditions are equivalent to
those adopted by Shindo et al. (1990, 1996, 1997, 2000) in a series of papers involving the electroelastic
analyses of cracks in a piezoelectric material, i.e.

Ex(x,07) = Ei(x,07) = E{(x,0), Dy(x,07) = D,(x,07) = Dj(x,0),  |x[<a, (12)

where the superscript ¢ represents the electric quantities in the void inside the crack.
Meanwhile, the elastic and electric field should fulfil the following continuity conditions along the line
y=0:

w(x,07) = w(x,07), ¢(x,0") = ¢(x,07), x| = a, (13)

T, (x,07) = 1,,(x,07), D,(x,0%) =D,(x,07), —00 < x < 00. (14)

Due to the symmetry of the problem under consideration, it is sufficient to analyze the right-half portion,
i.e. x > 0. Therefore in the following the electroelastic field in the region x > 0 is concerned and that in the
remaining section can be directly given by symmetry.

In order to obtain the desired electroelastic field, it is convenient to separate the problem considered into
two subproblems, one corresponding to the piezoelectric strip with no crack and the other corresponding to
the piezoelectric strip with a crack for which the anti-plane shear stress applied at the crack surfaces are
prescribed as the negative of those produced by the former, and the strip boundaries are also governed by
appropriate conditions (see below). For the former, a uniform field is produced, in which the components
of anti-plane shear stresses and electric displacements can be expressed as:

Ty (x,») =19, Dy(x,y) =Dy for case I, (15)

2
Vo
(x5, y) =1, Dy(x,y) = 2ro + <811 + e£> 70 for case 2, (16)

C44 C44
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Ty(x,y) = <C44 —i—;lf) 70 - ;]fDO’ D,(x,y) =D, for case 3, (17)

Ty (x,y) = w, D,(x,y) = %—ano for case 4. (18)

For the latter, a singular field arises, which can be solved from the following electroelastic boundary
conditions:

at the line y = 0,

sz(xv 0+) = sz(xa 0_) = _T([)7 (Z)(x, 0+) - ¢(X7 0_)7 Dy(xv 0+) - Dy(xa 0_)v |x| <a, (19)
T (x,07) = 7,(x,07),  w(x,07) = w(x,07), |x| = a, (20)
(]5()(, O+) = ¢(X, O_)7 Dy(x7 0+) = Dy(x’ 0_)’ |x| =a (21)

and at the strip boundaries,

case 11 1,(x, M) = 1,(x,—hy) =0, D,(x,h) =D,(x,—hy) =0, —00 < X < 00; (22)
case 2: T,(x, M) = 1,(x, —hy) =0, $(x, ) = d(x,—hy) =0, —00 < x < 005 (23)
case 3: w(x,h) =w(x,—h) =0, D,(x,ln)=D,(x,—h) =0, —00 < x < 00; (24)
case 41 w(x,hy) =w(x,—hy) =0, ¢x,h)=dx,—h) =0, —00 < X < 00, (25)

where 1) represents the value of 1.,(x,0) at the corresponding case, / = 1, 2, 3, 4, given by Egs. (15)—(18),
respectively.

From the viewpoint of fracture mechanics, of importance is the singular field disturbed by a crack.
Consequently, in what follows we restrict our attention to solving the singular field. To achieve this, an
integral transform technique is employed to reduce the latter posed by Egs. (19)—(21) and one of Egs. (22)—
(25) into dual integral equations. By use of the Fourier transform, it is easily shown that appropriate
solution of Eq. (5) can be expressed as the following integrals

wj(x, ) =/ [4;(&) cosh(y<) + B;(¢) sinh(y)] cos(x¢)d¢, x>0, (26)
0
8/x.3) = | 16€)coshiye) + Dy sinh (5] costx)dé, x>, 27)
0
where 4;(¢), ..., D;(&) are unknown to be determined from given conditions, and j = 1, 2 correspond to the

regions y > 0 and y <0, respectively.

With the aid of constitutive equations, from Eqgs. (26) and (27) it is not difficult to obtain the expressions
for the components of the stress, strain, electric displacement and electric field in terms of 4,...,D. For
example, we have

= / " El(casd; + e1sC)) sinh(vE) + (casB; + e1sD;) cosh(vE)] cos(xE) dé, (28)
0

Dy = [ eltersd;  enC)sinh(32) + (exs; — 61D cosh(y) cos() . (29)
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3. Solution procedure

In this section, our objective is to determine the singular electroelastic field induced by an anti-plane
shear crack and to give expressions for the relevant physical quantities including field intensity factors and
energy release rate. Here, without loss of generality, suppose that 4; > h,, which means that a crack may
not be located at the center of the strip, #; and &, being the distance between the crack surface and the top
boundary of the strip, and the crack surface and the bottom boundary of the strip, respectively.

First, from the continuity conditions along the line y = 0, i.e.

Tyl (x7 0) = szZ(xv 0)7 d)l(xv 0) = d’z(x» 0)7 Dy, (x7 0) = DyZ(x7 0)7 (30)
we find
By =B, C =G, D =D, (31)

Then one can easily show that the sliding displacement across the line y = 0 and the stress component at the
line y = 0 are expressed by the following integrals, respectively,

wy(x,0) — wy(x,0) = /OOO(Al — Ay)cos(xE)dé, x =0, (32)

T,;(x,0) = /000 E(cauB) + e1sDy) cos(xE)dé, x = 0. (33)

Furthermore, for case 1, the boundary surfaces y = 4, and y = —h, of the strip are free of stress and of
electric displacement, i.e. Eq. (22). Using Eqgs. (28) and (29), from Eq. (22) we get

Ay sinh(h &) + By cosh(h€) =0, Cjsinh(h &) + Dy cosh(h &) =0, (34)

Ay sinh(hy &) — By cosh(hy¢) =0,  Cysinh(hy¢) — D, cosh(hy &) = 0. (35)
Putting Eq. (31) into Egs. (34) and (35) yields

A2 = —A1 tan(hlé) COth(/’lzé), C2 = C] = D1 = D2 =0. (36)

The remaining unknown function 4; can be determined from the remaining mechanical boundary
conditions, i.e. the first in Eq. (19) and the second in Eq. (20), which, in connection with Egs. (32) and (33),
then become a pair of simultaneous dual integral equations for 4,

/oo [1 + tan(h &) coth(hy€)]4, (&) cos(x€)dE =0, |x| = a, (37)

—Cu /OC 4, (&) tanh(h &) cos(xé)dé = -V, |x| < a. (38)
0

In general, it is difficult to obtain a closed-form solution of the resulting dual integral equations except
for a particular case where a crack is situated at the center of a strip, i.e. #; = h,, for which we shall give a
closed-form solution in the next section. Here we first study the case of #; = h,, and the case of /; </, is
completely similar to the former. For this case, by using the techniques, outlined in Sneddon (1972) and
others, the dual integral equations can be transformed into a Fredholm integral equation of the second
kind. To achieve this, we choose 4,(¢) given by

2 a
_1+tan(h1§)coth(h2§)/0 W (u)Jo(ué) du, (39)

where Jy( ) denotes the Bessel function of the first kind of order zero and ¥(u) is an auxiliary function.

4:(¢)
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Recalling the results (Gradshteyn and Ryzhik, 1980)

/OoJo(ué) cos(x£)dé =0, x>u (40)
0
and
2 X
awd) =2 [ ar (41)

it is easily shown that Eq. (37) will be automatically satisfied. Eq. (38) then becomes the following Fredholm
integral equation of the second kind

a )
Y(x) + / KW (x, u)p(u) du = xcr—, 0<x<a (42)

0 44

with
o 2
KW = / —1 : 4

(o) =% | | Coth (i ®) £ coth(g) || EMo(xE)dE “3)
For case 2, the boundary surfaces y = #; and y = —h, of the strip are stress-free and grounded, i.e. Eq.

(23). A completely similar procedure leads to a pair of dual integral equations for A4, for case 2, which are
the same as the ones for case 1 and hence the Fredholm integral equation for the case 2 is also governed by
Eq. (42). It is noted that the only discrepancy between electroelastic fields for the cases 1 and 2 lies in their
individual uniform electroelastic fields.

For case 3, the boundary surfaces y = #; and y = —h, of the strip are fixed and free of electric dis-

placement, i.e. Eq. (24). In this case from Eq. (24) we have
A cosh(h &) + By sinh(h &) =0, (44)
A, cosh(hy€) — By sinh(hy¢) =0, (45)
(615141 — 611C1) Sll’lh(hlf) + (61531 — 811D1) COSh(h]f) = O, (46)
—(615142 — 811C2) Slnh(hzé) —+ (61532 — 811D2) COSh(l’lzé) = O, (47)

which, together with Eq. (31), can be solved in terms of A4,
Az = —Al COth(hli) tan(hzé), (48)
Bl = Bz = —A1 COth(l’llf), (49)

e
Ci=C = ?”A1 coth(h; &)[tan(h &) — tan(hy¢)], (50)
11

Dy = D> = 5 4, coth(h &)[tan(h &) tan(hs&) — 1]. (51)

&n

Upon substitution of these into Egs. (32) and (33) yields a pair of dual integral equations for 4,

/OO [1 4 coth(h &) tan(ha&)]A; (&) cos(xE)dE =0, x| = a, (52)

0 2 (3)
/ 5{1+&(1_tanh(h@tanh(hz«:)) coth(h&)4; (&) cos(x&)dé = —,  |x| < a. (53)
0 Ca4€11 Cy4
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Similarly, if we take

2 a
Eq. (52) is automatically satisfied and Eq. (53) is then transformed to
a xt®
zﬁ(x)—|—/ K(3)(x,u)zﬁ(u)du:c—, 0<x<a (55)
0 44

with

KO, :x/oo {2(:44811 + efs(1 — tanh(h§) tanh () 1] oo (e . (56)
0

caqeyr (tanh(h &) + tanh(hy¢))

For case 4, the boundary surfaces y = 4, and y = —h, of the strip are fixed and grounded, i.e. Eq. (25).
Using Egs. (26) and (27) we get

Ay cosh(h &) + By sinh(h &) =0, Cjcosh(h &)+ D sinh(h &) = 0; (57)

A cosh(hy &) — By sinh(hy &) =0, C;cosh(h€) — Dy sinh(hy¢) = 0. (58)
Thus, we deduce to
Ay = —A4, coth(h &) tan(hy€), C, = —C) coth(h &) tan(hy&) (59)
from which in connection with Eq. (31), it follows that
C,=C =D =D, =0. (60)
Consequently, one can easily show in this case that the remaining mechanical boundary conditions, i.e.

the first in Eq. (19) and the second in Eq. (20), in connection with Egs. (32) and (33), result into a pair of
simultaneous dual integral equations for 4, as follows

/Oo [1 + coth(h &) tan(hy€)]4, (&) cos(x€)dE =0, |x| = a, (61)

—Cys4 /OO EA4, (&) coth(h &) cos(xé)dé = —r(4>, x| < a. (62)
0

Likewise, if we take 4;(¢) in the form of Eq. (54), Eq. (61) is automatically satisfied and Eq. (62) is
transformed to

a (4)
W(x) —|—/ K9 (e, u)y (u) du = xcr_’ 0<x<a (63)

0 44

with
o 2
KW X, u) =x / {

(x,u) o | tanh(h &) 4 tanh(hy¢)
For the purpose of computation, introducing dimensionless variables

=% a:g, nﬁ(i):@, (65)

a

= 1| & (ué)Jo(xE) de. (64)

the Fredholm integral equations obtained above for all the four cases can be rewritten in dimensionless
form
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_ - _ w70
(%) +/ K<’>(x,a)1//(a)da:x;—, 0<x<1, [=1,2,3,4, (66)
0 44
where
KOG = % [ k(o)) o (67)
0
with
kO (p) = kD () = Ll cosh L_lq (68)
sinh(n) a+1 ’

W) = i (1425

C44811

) cosh ( ) + e”}, (69)
K9 () =~ ! { " + cosh < )} (70)

o=—, 0=—. (71)

Once the auxiliary function (%) is determined from Eq. (66), the entire electroelastic field is obtainable.
Due to the complicated form of the kernel, it seems unlikely that a closed-form solution can be determined
for y(x) and therefore one must appeal to either numerical or approximate methods for solving this
equation. In effect, by replacing Eq. (66) with a finite system of algebraic equations, a solution to Eq. (66)
may be determined by numerical schemes (Baker, 1978).

In particular, the case of small parameter 0 is of much interest in practical applications. For this case an
approximate solution to Eq. (66) can be constructed by using an iterative approach as follows. For small
values of 6 < 1, we propose a solution to Eq. (66) in the form

&
%) =— > 0", (%) (72)
44 n=0
Using the expression of Jy(x) in power series form, we find
_ _ 1 1 _
Jo(and)Jo(xnd) = 1 —i(u2 + )" + (u + 4i’x* + 7ot + 0(0°%), (73)
which permits us to write the kernel (67), K ()_c, ), in Eq. (66) in power series form
K(x u) = ngZn )52 (74)
n=0
with
= =\ _ 1) - = _i(l)-z =2 - = _i(l)—4 =2-2 | -4
g(xu) =1, gxu) = 221, (x*+u), gilx,u)= 2612 (x* +4xu +u), (75)
where
1 =1y [ R (76)
0

Now substituting y(x) and K (%, #), respectively, from Egs. (72) and (74) into Eq. (66) and comparing the
coefficients of powers of 6 from both sides, we obtain an approximate solution, given by Eq. (72), where
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Yo(x) =X, (77)
1
l//2n =X Z / &om-2 (5‘:7 ﬁ)‘/’Zn—Zm (ﬁ) du, n=1,2,3,... (78)
0
By carrying out the iterative process up to (%), we get
V() = —31' %, (79)
g1 N2l
Vi) = =5 |1 Gﬁj - (1) | (80)

o 11 2 = 1 % > 1"\ |
Vel®) = 1§’><@+§+1—6>—13’>1f’><4—1+3> +1(§’><(1(§”) -5 | |® (81)

Therefore we obtain an approximate solution for small values of é to be

5 = T [0 + 0I5+ 000+ G5 + 00", (52)

In particular, (1) can be evaluated approximately by

- ) 1 | 35 5
b == [1 — 318 + <(1(§”) - Z[ )54 -5 ((ﬂ”) -2+ )56 +0(6 )}, (83)
where the values of /) may be determined from the asymptotic expressions given in Appendix A.

For many purposes, it is desirable to determine field intensity factors and energy release rate. In
particular, in analyzing the stability of a crack in a piezoelectric material, they may be chosen as two
important parameters (Pak, 1990; Suo et al., 1992; Gao et al., 1997). Since field intensity factors and
energy release rate are closely related to the crack-tip field, it is natural to determine the asymptotic
expressions for electroelastic field near the crack tip. This is done in what follows. After neglecting certain
lower-order terms, the distribution of 7.,(x, 0) has the following asymptotic expression in the vicinity of the
crack tip

T (%,07) = 7,0 (%, 07) = caatf(1 )\/>+ o), r=x—a(0<rfakl), (84)
which further allows us to determine the stress intensity factor at the crack tip
Kj = 11m V21 (x — @)t (x,07) = cap(1)y/7a. (85)

By an analogous treatment, the asymptotic distributions of the components of electric displacement,
Dy (x,0), and anti-plane shear strain, 7,,(x,0), may be expressed in a unified form in terms of ¥(1), i.e.

Kh o Kin
D,V(xv 0) \/g_F O( )? ))zy( ’O) - \/2_7'57"+ O(l)’ (86)
where
Ky = eisy(1)vra, Kiy = y(1)V/na. (87)

It is easily seen that

KIDI] = elSK{II? Ky = C44Kfn- (88)
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As expected, for all the four cases, the intensity factors of stress, strain, and electric displacement exhibit
the square-root singularity at the crack tip, while the tangent component of electric field always vanishes
along y = 0. Moreover, for cases 1 and 2, the kernel of the governing integral equation (66) is independent
of material constants, and it further reveals that in these two cases the stress intensity factor Kjj; is inde-
pendent of material constants, and depends only on the geometric parameters such as the dimensionless
crack length a/h and the crack position 4 /h,. For cases 3 and 4, field intensity factors depends not only on
material constants, but also on the geometric parameters.

As a check, in the limiting case as h; — oo, by — oo in Eq. (67), we get K")(x,%) = 0, which then implies
the solution of Eq. (66) to be /(X) = ¥t9/cu, and furthermore we can derive the corresponding electro-
elastic field, which is identical to that for a crack in an infinite piezoelectric material by Zhang and Tong
(1996).

From the viewpoint of Griffith energy balance, the energy release rate, defined as the change of energy of
a cracked medium for an infinitesimal crack extension, is also a significant fracture criterion in piezoelectric
materials (Pak, 1990; Suo et al., 1992; Gao et al., 1997). Assume that under applied loadings the crack tip
advances along the crack plane from x = a to a + da (da < a). Then the energy release rate per unit length
during this process is given by

da
Gm = 513310 2—1&1 /0 [7.,(r,0) Aw(8a — r,0) + D,(r,0) A¢(3a — r,0)] dr, (89)
where r denotes the distance from the crack tip.

It is noted that electric potential is continuous across the crack for a permeable crack, and consequently
it has no contribution on energy release rate. As a result, values of the energy release rate coincide with
values of the mechanical strain energy release rate proposed by Park and Sun (1995a,b).

To evaluate the energy release rate, it is necessary to determine the crack sliding displacement across the
crack surfaces Aw(x,0) (0 < x < a), in particular the asymptotic expression for Aw(x, 0) near the crack tip,
x=a—r (0 <r/a<1). After some algebra, the final result is

Aw(x,0) = wy (x,0%) — wy(x,07) = 2¢(1)V2ar + O(r), r=a—x (0 <rla<1). (90)

With the asymptotic expressions for .,(x,0) and Aw(x,0) at hand, the integral given by Eq. (89) can be
directly calculated, which is expressed as follows

. : (Kf11)2~ (91)

a —
Gm = 7&4[‘#(1)]2 = m
From the above, we conclude that for a cracked piezoelectric strip of stress-free boundary, energy release
rate at the crack tip is independent of electric loadings, while for a cracked piezoelectric strip of clamped
boundary, energy release rate at the crack tip depends not only on mechanical loading but also on electric
loadings. These conclusions are in accordance with those for a central crack in a piezoelectric strip in
Shindo et al. (1997), and those for a crack in an infinite piezoelectric material in Zhang and Tong (1996).

4. Crack situated at the center of a piezoelectric strip

Generally speaking, a closed-form solution is the desired for a majority of problems, and however one
usually has to appeal to approximate or numerical approaches for solving some practical problems due to
mathematical complications. In this section, a closed-form solution can be obtained for a particular case
of a crack situated at the center of a piezoelectric strip, i.e. 4 = h,. In what follows for convenience cases
1 and 4 will be studied, respectively.
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First we consider case 1. In this case, if introducing a new function

= [ 2 g, 92
- [ A (92)
we find that by virtue of Eq. (41), Eq. (39) is then rewritten as the following form
2 a
40 =2 [ o) eos(ae) d, 93)
0

which, in fact, is derived as well in an alternative approach by application of inverted Fourier cosine
transform to Eq. (37). In addition, from Egs. (32) and (37) we observe

@(x) = 3wi(x,07) —wa(x,07)] = 3Aw(x,0) (94)
and so ¢(x) =0,x>a
Substituting Eq. (93) into Eq. (38) yields an integral equation for ¢(x)
7 ra 00 1)
2 / o(u) du / ¢ tanh(h) cos(u) cos(x&)de = x| <a (95)
0 0 44

T

Recalling the known result (Gradshteyn and Ryzhik, 1980)

* tanh(h¢) cos(£¢)
/0 T e = ’coth(4h) (96)
we find
o _1dd sinh(bx) + sinh(bu)
/0 ¢ tanh(hc) cos(ut) cos(xC) de = 2 dx du In sinh(bx) — sinh(bu) |’ ©7)
which allows us to rewrite Eq. (95) in the form
1 [, sinh(bx) + sinh(bu) xtD
z - <
T /0 ¢/(u)n sinh(bx) — sinh(bu) du ca Osx<a %8)

where b = n/2h, the integration by parts in deriving the above equation and ¢(a) = 0 have been employed.

Eq. (98) is a singular integral equation with logarithmic kernel. With the aid of the known results
(Cooke, 1970; Estrada and Kanwal, 1989), the half of the sliding shear displacement across the crack
surfaces is found to be

_ / (n/2,tanh(bu)) sinh(bu) du. 0<x<a (99)
ey \/ sinh®(hu) — sinh?(bx)

and the anti-plane shear stress can also be given explicitly as follows

2 (1) h h : h2 P h2
£ (x,0) = T cosh(ba) tanh(bx) F(E,tanh(b )> 3 51r.1 gbx) sm2 (ba)
T \/ sinh®(hx) — sinh®(ba) 2 sinh”(bx) cosh”(ba)
n  tanh®(ba)
x II| =, — ———=tanh(b , > a, 100
(2 canh(b) P a)ﬂ o (100)

where F and IT are the elliptical integrals of the first kind and the third kind, respectively. It is further seen
easily from Egs. (28) and (29) that the normal component of electric displacement is expressed explicitly,
which is related to the anti-plane shear stress component by
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e
D,(x,0) = jrzy(x, 0), x>a. (101)
i Caq
As expected, the anti-plane shear stress, electric displacement exhibit the usual square-root singularity
near the crack tip, and their intensity factors and energy release rate in this case as well can be obtained in
explicit form by a straight calculation,

2 h
Kfnzr“)\/ﬁEF(g,tanh(ba)) W, (102)
2 _/m tanh(ba)
K =50 /mgZF( T tanh —_— 1
o C44r na_ (2,tan (ba)) o (103)
and
G — [r(l)]zna %F(E tanh(b )) tanh(ba) ’ (104)
= 2C44 T 2, “ ba '

If setting & — oo, i.e. b — 0, the above results revert to those for a permeable crack embedded in an
infinite piezoelectric material in Zhang and Tong (1996).

Now we turn our attention to case 4. By an entirely analogous treatment, in view of Eq. (93), Eq. (62)
becomes

2 fa % @)
2 / o(u) du / £ coth(he) cos(ué) cos(x&) dé = —, x| < a. (105)
T Jo 0 Cag

Recalling the known result (Gradshteyn and Ryzhik, 1980)

/O N —com(}’% Cos(f€) 4e = —In [25inh (%)‘ (106)

and proceeding as before, we find

o 1dd tanh(bx) + tanh(bu)
/0 & coth(hé) cos(ué) cos(xé)dé = T ardn tanh(bx) — tanh(bu) | (107)
which allows us to rewrite Eq. (105) in the form
1 [, tanh(bx) + tanh(bu) xt®
— 1 du=——, 0< , 108
n /0 ¢/(u)n tanh(bx) — tanh(bu) T rea (108)

where b = 7/2h.
Using the known results of a singular integral equation with logarithmic kernel (Cooke, 1970; Estrada
and Kanwal, 1989), the solution of Eq. (108), i.e. the half of the sliding shear displacement across the crack
surfaces, is found to be
Q) h(b
o) =~ 2 s (22100

R N <x<
cosh(ba) )’ OSx<a (109)

bcuy

and the components of anti-plane shear stress and electric displacement are given in explicit form,
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inh (b
7.,(x,0) = ¥ sinh(bx) -1, x>a, (110)
\/sinh?(bx) — sinh?(ba)
(4) i
D, (x,0) = £15° sinh(bx) ~1|, x>a (111)

€|\ /sinh®(bx) — sinh’(ba)

From these expressions for 7.,(x,0) and D,(x,0), the anti-plane shear stress and electric displacement
also exhibit the usual square-root singularity near the crack tip, and the intensity factors of stress and
electric displacement are respectively

2h na

Koy =t y/may /= t h(—) 112
m =TV — an ) (112)
D _ €15 ) 2k (ﬂ)

K o Tmay[— tanh ) (113)

The energy release rate in this case is
[‘c<4>]2h na

G = tanh (—) 114

11 cu an 2 ( )

which indicates that in view of Eq. (18) both the mechanical loading and electric loading have influence on
the energy release rate for the case of clamped boundaries. The energy release rate for a permeable crack is
always positive, irrespective of positive or negative electric field, and the magnitude, however, varies with
the direction of electric field. In other words, the change of direction of electric field will enhance or retard
the propagation of a crack.

The results obtained by Zhang and Tong (1996) are recovered again from a limiting case, 7 — oo, of the
present results. On the other hand, for another limiting case, i.e. a semi-infinite crack lying in the center of a
piezoelectric strip, the electroelastic field can be straightforwardly obtained by a limiting procedure from
the above results. That is, replacing x with a + x; in the electroelastic field given above, and then setting
a — oo, we find that analytical expressions for the desired anti-plane shear stress and electric displacement
are respectively

ehx1 /2
T,(x,0) =W | ——x— 1|, x>0, (115)
’ 2 sinh(bx)
(4) by /2
D, (x,0) = &5° d 1|, x>0, (116)
Ca4 2 sinh(bxy)
which allow us to evaluate the intensity factors of stress and electric displacement near the crack tip as
4 D e;st?
Ky =t9V2h, KB = V2h (117)
Cya

and the energy release rate as

<]

Ca4

(118)

I =
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5. Results and discussion

Numerical results for the normalized energy release rate Gi/Gs, G being the energy release rate as
hy — oo and hy — oo, are presented. It is noted that in the expression for G, for cases 3 and 4, wy/h and
Vo /h are understood as constants y, and E,, respectively, as # — oco. Taking into account

G /G = [E450)]" = [Bo(1) + P0s(1) 4+ 0, (1) + O )] (19)

where /,(1),¥,(1),..., are given by Egs. (77) and (79), etc., it is easily seen that Gy;/G, is independent of
material constants except for case 3.

Theoretically, the higher the order of ¢ in the terms appearing in the above expression is, the more
accurate approximate value of Gy;/G,, is. However, for a given order of ¢, experience shows that it is the
best to take

_ 2T o T 2
Gin/Goe = [Wo(1) + (1) + -+ 26", (1)] (120)
instead of
G/ G = [Bo(1) + 50(1) -+ 5, (1)] (121)

This is demonstrated in Figs. 2 and 3 for cases 1 and 4, respectively, in which the solid line is generated
from the analytical expressions

2 /x na 22h na
Gui/Goo = [EF(Z,tanh(ﬂ))} Etanh(ﬂ> (122)
for case 1 and

2h na
Gun/Gx = — tanh (ﬂ) (123)
for case 4, and the other lines are generated from some approximate expressions (120) and (121) for n =3
and 2.

Lar
Eq.(122) K
————— Eq. (120) for n=3 e
13 | e Eq. (121) for n=3 case 1 /
------- Eq. (121) for n=2 .
8 |1l
C) 1.2
\—
© 1.1}
/
op——m"
0.9 1 L 1 L )
0.0 0.2 04 0.6 0.8 1.0

a’h

Fig. 2. Comparison of exact value and approximate value of the normalized energy release rate for case 1.
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05k | Eq. (121) for n=3
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a’h

Fig. 3. Comparison of exact value and approximate value of the normalized energy release rate for case 4.
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Fig. 4. Variation of the normalized energy release rate Gy /G versus the dimensionless crack length a/h for several different crack
positions 7, /h; = 0.25, 0.5, 1, 2, 4 for case 1.

Evaluating Gi;1/G,, by using Eq. (120), Figs. 4-6 show that the variation of the normalized energy re-
lease rate Gy /G, versus the normalized crack length a/h when the ratio h;/h, = 0.25, 0.5, 1, 2, 4, for cases
1, 3, and 4, respectively. It is observed that with increasing a/h, Gi1/ G increases for a piezoelectric strip of
stress-free boundary, and decreases for a strip of clamped boundary. In Figs. 7-9, the variation of Gyy/G4
versus the crack position, denoted as 4 /hy, is plotted with a/h = 0.01, 0.1, 0.3 for cases 1, 3, and 4, re-
spectively. From these figures it is found that when a crack is located at the center of a piezoelectric strip,
Gm /G, arrives at the minimum for the case of stress-free boundary and the maximum for the case of
clamped boundary. As a result, we conclude that a central crack in a piezoelectric strip of stress-free
boundary is more easy to extend than an eccentric crack, while an eccentric crack in a piezoelectric strip of
clamped boundary is more easy to extend than a central crack.

For case 3, the variation of Gy;;/G,, versus the electromechanical coupling factor e;s/ (C44811)1/ 2 is pre-
sented graphically for different crack position 4, /A, and dimensionless crack length a/h, which reveals that
the electromechanical coupling factor has an apparent influence on the normalized energy release rate
Gm/Gs. In principle, G/ G, decreases as e;s/ (044811>1/ % increases (Fig. 10).
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Fig. 5. Variation of the normalized energy release rate Gi/G,, versus the dimensionless crack length a/k for several different crack
positions %, /h, = 0.25, 0.5, 1, 2, 4 for case 3.
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Fig. 6. Variation of the normalized energy release rate Gi/G,, versus the dimensionless crack length a/k for several different crack
positions %, /h, = 0.25, 0.5, 1, 2, 4 for case 4.

6. Conclusions

The problem involving a piezoelectric strips with a through anti-plane shear crack is analyzed under the
action of four cases of combined electromechanical loadings. Using an integral transform technique, dual
integral equations resulting from the mixed boundary value problem are further converted into a Fredholm
integral equation for a new auxiliary function, which is solved analytically by an approximate method. The
intensity factor of electroelastic field and the energy release rate are explicitly expressed in terms of the
introduced auxiliary function. For a crack lying at the center of a piezoelectric strip, closed-form solutions
for cases 1 and 4 are obtained, respectively. The results indicate that the energy release rate is independent
of electric loadings for a piezoelectric strip of stress-free boundary and depends on both electric loadings
and mechanical loadings for a piezoelectric strip of clamped boundary. Numerical results are presented
graphically to show the dependance of field intensity factors and energy release rate on material constants
and geometric parameters.
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—&— a/h=0.05
1.2 —&— a/h=0.1
—A— a/h=0.3

Fig. 7. Variation of the normalized energy release rate Gii/G, versus the crack position A /h, for dimensionless crack length
a/h =0.05, 0.1, 0.3 for case 1.
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Fig. 8. Variation of the normalized energy release rate Gii/G. versus the crack position /;,/h, for dimensionless crack length
a/h =0.05, 0.1, 0.3 for case 3.
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Appendix A

Using the following asymptotic relation

n

_ —2.7316n —n
Sinh(n) (1 +0.76734n)e +2ne™",
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Fig. 9. Variation of the normalized energy release rate Gui/G. versus the crack position k;/h, for dimensionless crack length
a/h =0.05, 0.1, 0.3 for case 4.
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Fig. 10. Variation of the normalized energy release rate Gy/G. versus the electromechanical coupling factor e;s/ (c44$11)1/ 2 for dif-
ferent crack position /;/h, and dimensionless crack length a/h for case 3.

which is established by Keer and Lin (1987), who treated the crack problem of in an elastic layer of fixed
surfaces, one can obtain a simple, approximate, analytical formula for evaluating /\"’, which can evaluated
by separating into two parts M, and N,,

2n+1
M, = e 'd
/ sinh(n) s

2n+l -1
osh
Bn = / sinh(i7) o8 ( +1 )dn,

where M, and N, have the following asymptotic expressions:

Wy ! [2(1.206 +0411n) 20+ 1]

2 3.73167+1 4
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N (27’1)' 1+0€ 2n+1 N 1+“ 2n+1
"2 1.7316 + 3.7316a 3.7316 + 1.7316«

1+a 2 1+O( 2n+2
: 4(2 1
+0.76734(2n + 1) (1,7316+3.7316a> - (3.7316+1.7316ac>

1 2n+2 1 2n+2
+202n+1) (;;“) +<42r°{)
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